科普知识

极速3分彩 > 科普知识

你不知道的光伏组件自清洁技术

编辑:度美到家|

本世纪以来,光电转换技术发展迅猛,光电转换效率在经历了早期迅速提升后,由于已逐渐接近理论极限值,突破性技术的研发速度已进入平稳期。在这种情况下,其他因素对组件发电效率和发电量的影响逐渐凸显。其中,灰尘遮挡对组件的影响逐渐成为一个重要的研究课题。光伏组件自清洁技术在此背景下应运而生。

自清洁技术是指具备自我净化清洁能力的技术,这项技术的研究最早开展于上个世纪七、八十年代,通常以玻璃、瓷砖、水泥等等建筑材料为载体。在光伏领域的应用,主要是在光伏组件用玻璃面板表面使用自清洁技术,使玻璃发生物理或化学反应,从而不再需要通过传统的人工擦洗方法,而在自然雨水的冲刷下达到清洁状态。自清洁技术的载体为光伏组件玻璃面板,自清洁材料以“膜层”或“涂层”的状态与玻璃进行结合,呈现自清洁效果。具备这种自清洁能力的玻璃业界称为“自清洁玻璃”,安装这种玻璃的组件为“自清洁组件”。
自清洁技术分类

自清洁技术的分类主要是按照其侵润性,可分为超亲水性自清洁玻璃和超疏水性自清洁玻璃。

超亲水和超疏水的区别如下图所示:

接触角.png

由上图可知,WCA为固体表面与水的接触角,接触角大于90°时为疏水性表面,当水在固体表面的接触角小于90°时,我们称其为亲水性表面,普通玻璃与水的接触角为30°~40°,所以玻璃很容易形成水珠,并且水珠不易滑落,在水干燥过程中,又极易吸附空气中的灰尘,干燥后形成水痕,长期积累形成污垢。

当使用某种技术,使接触角大于150°时为超疏水表面,通过涂层表面乳突纳米结构使水滴极易从玻璃表面滚落,形成我们俗称的“荷叶效应”。反之,小于5°时为超亲水表面。水滴落在玻璃表面后,均匀的铺展开,和玻璃表面达到最大接触面积,在重力作用下更易带走大片的污染物。这样用更少的清水或雨水就可以将光伏组件表面的灰尘、沙土清除。

目前,市场上所使用的技术绝大多数为疏水技术,疏水技术虽能实现一定程度的自清洁效果,但存在以下两点普遍问题:

1、通过改变材料表面纳米形貌使膜层疏水,疏油性却不好,而电站现场很多灰尘和污染物都含有油性物质,油性物质极易粘附在玻璃表面。同时,由于涂层表面疏水,下雨或冲洗时,水又很难和大面积的油性物质接触而将其带走。因此,疏水膜层通常具有较差的自清洁能力。

2、多年来业界一直公认疏水基团非常容易与环境作用,在半年内逐渐失去疏水效果,无法保证长期使用寿命,从而无法保证真正意义上的自清洁效果,不如亲水性材料。

超亲水自洁涂料

超亲水自洁涂料又分为纳米二氧化钛型超亲水自洁涂料和无机纳米硅超亲水自洁涂料。

纳米二氧化钛型超亲水自洁涂料,其特点是超亲水、防油污、防霉抗菌,其缺点是纳米二氧化钛必须要有阳光照射更准确的说是要太阳光中的紫外线的激发才可以起作用,所以它对阳光的依赖性很大,在晚上、阴雨天或者建筑物的背光面效果都不好,由于纳米二氧化钛的强氧化性,它也不能使用在有机物表面。

无机纳米硅超亲水自洁涂料,其特点是超亲水、防静电(防灰尘)、防霉抗菌、施工简单易学、常温急速干燥(5分钟内)、一次施工5年长期有效。

光伏对比.jpg

自清洁技术能够帮助组件提高发电量,显著提高电站收益水平,但是,并不是所有的自清洁技术均能达到光伏组件的使用要求,请业主和组件厂在选择过程中注重考察自清洁产品的可靠性、自清洁效果,以及是否会对玻璃透光率产生不良影响。

科普知识按钮

你不知道的光伏组件自清洁技术

本世纪以来,光电转换技术发展迅猛,光电转换效率在经历了早期迅速提升后,由于已逐渐接近理论极限值,突破性技术的研发速度已进入平稳期。在这种情况下,其他因素对组件发电效率和发电量的影响逐渐凸显。其中,灰尘遮挡对组件的影响逐渐成为一个重要的研究课题。光伏组件自清洁技术在此背景下应运而生。

自清洁技术是指具备自我净化清洁能力的技术,这项技术的研究最早开展于上个世纪七、八十年代,通常以玻璃、瓷砖、水泥等等建筑材料为载体。在光伏领域的应用,主要是在光伏组件用玻璃面板表面使用自清洁技术,使玻璃发生物理或化学反应,从而不再需要通过传统的人工擦洗方法,而在自然雨水的冲刷下达到清洁状态。自清洁技术的载体为光伏组件玻璃面板,自清洁材料以“膜层”或“涂层”的状态与玻璃进行结合,呈现自清洁效果。具备这种自清洁能力的玻璃业界称为“自清洁玻璃”,安装这种玻璃的组件为“自清洁组件”。
自清洁技术分类

自清洁技术的分类主要是按照其侵润性,可分为超亲水性自清洁玻璃和超疏水性自清洁玻璃。

超亲水和超疏水的区别如下图所示:

接触角.png

由上图可知,WCA为固体表面与水的接触角,接触角大于90°时为疏水性表面,当水在固体表面的接触角小于90°时,我们称其为亲水性表面,普通玻璃与水的接触角为30°~40°,所以玻璃很容易形成水珠,并且水珠不易滑落,在水干燥过程中,又极易吸附空气中的灰尘,干燥后形成水痕,长期积累形成污垢。

当使用某种技术,使接触角大于150°时为超疏水表面,通过涂层表面乳突纳米结构使水滴极易从玻璃表面滚落,形成我们俗称的“荷叶效应”。反之,小于5°时为超亲水表面。水滴落在玻璃表面后,均匀的铺展开,和玻璃表面达到最大接触面积,在重力作用下更易带走大片的污染物。这样用更少的清水或雨水就可以将光伏组件表面的灰尘、沙土清除。

目前,市场上所使用的技术绝大多数为疏水技术,疏水技术虽能实现一定程度的自清洁效果,但存在以下两点普遍问题:

1、通过改变材料表面纳米形貌使膜层疏水,疏油性却不好,而电站现场很多灰尘和污染物都含有油性物质,油性物质极易粘附在玻璃表面。同时,由于涂层表面疏水,下雨或冲洗时,水又很难和大面积的油性物质接触而将其带走。因此,疏水膜层通常具有较差的自清洁能力。

2、多年来业界一直公认疏水基团非常容易与环境作用,在半年内逐渐失去疏水效果,无法保证长期使用寿命,从而无法保证真正意义上的自清洁效果,不如亲水性材料。

超亲水自洁涂料

超亲水自洁涂料又分为纳米二氧化钛型超亲水自洁涂料和无机纳米硅超亲水自洁涂料。

纳米二氧化钛型超亲水自洁涂料,其特点是超亲水、防油污、防霉抗菌,其缺点是纳米二氧化钛必须要有阳光照射更准确的说是要太阳光中的紫外线的激发才可以起作用,所以它对阳光的依赖性很大,在晚上、阴雨天或者建筑物的背光面效果都不好,由于纳米二氧化钛的强氧化性,它也不能使用在有机物表面。

无机纳米硅超亲水自洁涂料,其特点是超亲水、防静电(防灰尘)、防霉抗菌、施工简单易学、常温急速干燥(5分钟内)、一次施工5年长期有效。

光伏对比.jpg

自清洁技术能够帮助组件提高发电量,显著提高电站收益水平,但是,并不是所有的自清洁技术均能达到光伏组件的使用要求,请业主和组件厂在选择过程中注重考察自清洁产品的可靠性、自清洁效果,以及是否会对玻璃透光率产生不良影响。

电话号码
400-8768-336
公众号二维码
公众号二维码